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PREFACE

Two separate phases of propellant sloshing under low-gravity conditions were investigated during this
project. Results of the first phase, an experimental and analytical study of sloshing in rectangular tanks,
have been reported previously in Technical Report No. 1, January 1970. A summary of Technical Report
No. I is presented as the Appendix to this Final Report. Details of the second phase, which is comprised of
an analytical study of sloshing in ellipsoidal tanks, are included as the major portion of this Final Report.

The SwRI Project Manager was Dr. Franklin T. Dodge. Mr. Luis R. Garza contributed substantially to
the experimental portion of the research, and Dr. Wen-Hwa Chu made several valuable suggestions con-
cerning the analytical approach.

The entire program was made possible by the continuing efforts of the NASA-MSFC technical
monitors: Mr. Robert S. Ryan, Mr. Frank Bugg, and Mr. Harry Buchanan.
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ABSTRACT

A variational integral is formulated from Hamilton's principle and is proved to be equivalent to the
usual differential equations of low-gravity sloshing in ellipsoidal tanks. It is shown that for a zero-degree
contact angle the contact line boundary condition corresponds to the "stuck" condition, a result that is due
to the linearization of the equations and the ambiguity in the definition of the wave height at the wall.

The variational integral is solved by a Rayleigh-Ritz technique. Results for slosh frequency when the
free surface is not "bent-over" compare well with previous numerical solutions. When the free surface is
"bent over," however, the results for slosh frequency are considerably larger than those predicted by
previous finite-difference, numerical approaches; the difference may be caused by the use of a zero degree
contact angle in the present theory in contrast to the nonzero contact angle used in the numerical
approaches.
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Anm, Bnm various definite integrals

b radius to point of vertical tangency of free surface, see Fig. 1

C curvature of free surface

f height of free surface above z = 0, see Fig. 1

F f/ro

g gravity or equivalent steady axial acceleration of tank

h location of r,z coordinate system above center of tank, see Fig. 1

H h/ro

I variational integral

Jl Bessel function of first kind of order one

Q semi-axis of tank, see Fig. 1

L £/rO

NBO Bond number, pgr2/au

p liquid pressure

Po gas pressure

r, z, 0 cylindrical coordinate system, see Fig. 1

R, Z, 0 r/r o , z/ro , 0, respectively

ro radius of tank

rw radius to point of intersection of free surface and tank wall, see Fig. 1

Rw rw/ro

w z = w(r), equation of tank surface

W W/ro

an, constants in expansion of qb into a series

P defined in Eq. (12) or see Fig. 1

F, F' constants describing contact line conditions

vii



LIST OF SYMBOLS (Cont'd)

6 variation symbol

e(R,O) i2/ro

7ij(r,O) slosh wave height

A n parameter in Bessel function solution of V2' = 0

/l defined in Eq. (13)

p, a liquid density and surface tension

T--(r,O,z) velocity potential

4(R,O,Z) /

contact angle

X slosh natural frequency

£2 o(g/ro)' /2

V Laplacian operator

viii



I. INTRODUCTION

The study of liquid sloshing under strong capillary and weak gravity conditions, usually called
low-gravity sloshing, was begun in detail with the publication in 1964 of the report [1] * by Satterlee and
Reynolds, dealing with circular cylindrical tanks. By 1966, low-gravity sloshing in a circular cylindrical tank
was sufficiently well understood to allow an equivalent (mathematical) mechanical model to be
derived [2]. Detailed research concerning spherical and ellipsoidal tanks began somewhat later, with the
delay probably caused by the knowledge that there would be considerable analytical difficulties with these
geometries. Thus, it was not until early in 1968 that the present analytical work was started at SwRI to
predict low-gravity sloshing behavior in an ellipsoidal tank, under the initial sponsorship of Contract
NAS8-20290, and later under the sponsorship of Contract NAS8-24022, both with NASA-MSFC.

To avoid as much as possible the expected analytical trouble in satisfying exactly all the mathematical
"boundary conditions" for low-gravity sloshing in spheroidal tanks, it was decided to formulate the equa-
tions of motion as an integral of the kinetic and potential energy (Hamilton's principle) and then to find
the solution by a Rayleigh-Ritz approximation technique. Rattaya had shown this procedure to be satis-
factory for ordinary sloshing (flat interface) in spheroidal tanks [3]. In fact, Yeh had already derived such
an integral for conditions under which the free surface does not "bend over" although he presented no
numerical solutions [4].

During the 3 years since this research was started, several numerical solutions of the exact differential
equations of low-gravity sloshing have appeared, either for an ellipsoidal tank [5] or for a more general
axisymmetric tank [6].t Thus, the numerical results of the present work are now somewhat out-of-date,
especially since a completely satisfactory solution for sloshing with a "bent over" free surface has not been
obtained. The present analysis is still significant, nevertheless, because several difficulties are pointed out
which relate to the difficulty in obtaining correct expressions for the behavior of the slosh wave at the tank
wall in the event that the contact angle is zero degrees. These difficulties are not so evident in a completely
numerical treatment, where the contact angle is usually taken to be about five degrees [5, 6]. Further-
more, an approximate but easily made calculation of the equilibrium free-surface shape is presented herein;
this result should be useful for making quick computations of liquid volumes or tank sizing requirements.

*Numbers in brackets refer to References listed in Section VI of this report.
tA major reason for the delay in completing the present work was the Project Manager's heavy involvement in developing
the computer program described in Ref. 6.



II. EQUILIBRIUM FREE SURFACE

When gravitational forces are small, the shape of the free surface is determined by the combined
influence of gravity g, surface tension a, and contact angle A. Thus, the equilibrium free surface for an

axisymmetric tank is a surface of revolution about the
b - z-axis (the z-axis and the direction of gravity coincide) as

~rw - shown in Figure 1.
Po, GAS PRESSURE

Let the equation of the free surface be z= f(r) and
the equation of the tank shape be z = w(r); both f and w

/ , SURFACE may be double-valued functions. The free-surface shape
is determined by the following equations [ 1,2]:

Po - P=oC (1)

which relates the pressure jump to the curvature C of the
////9 J free surface. The curvature C is

P, DENSITY 1 d r(dfldr)

r dr [1 + (df/dr) 2 ] 1/2 (2)

z=w(r) where the negative sign corresponds to the bent-over
part of the surface. The liquid pressure p must satisfy

3112 the hydrostatic requirement:
FIGURE 1. NOMENCLATURE FOR EQUILIBRIUM

SHAPE OF LIQUID P = Po - Pgf (3)

where po is the liquid pressure at r = z = O. Combining Eqs. (1), (2), and (3) gives

a+ d r(dfldr) gf = 
r dr [1 + (dfl/dr) 2]1/ 2 =p(4)

The pressure difference p, - po depends on the curvature at the center ( r = z = 0). Because f= dfl/dr = O at
r = 0, Eq. (4) shows that this pressure jump is

/d2f
Po --P = 2a dr2 f (5)dr2 /=

Thus, the governing differential equation can be obtained by combining Eqs. (4) and (5):

+d f r(df/dr) 2 d2 -- gf (6)
r dr [l + (dfldr) 2 ] 1/2 dr2= (6)

The boundary conditions on f are

f= dO atr=0 (7)
dr

df dw 
-= tan k+ arctan - atr =r w (8)
dr ( r)
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where t is the angle of contact. By letting R = r/ro, F=f/ro, W= w/ro, and NBO = pgr2ol, Eqs. (6), (7),
and (8) can be written in nondimensional form as

d {[1 (dF/dR)/2 } 2(d2F) -NBoF= O (9)
R dR I+(dF/dR) 2 1 I/ 2 dR2 R o

F=O

atR= O (10)
-=0
dR

dF dW
-- atR =R w (11)

dR dR

and, in Eq. (11), the contact angle j is assumed to be zero. The tank shape is W(R) =-H +L (1 -R 2 ) 11
2,

where H = h/ro and L = Q/ro (see Fig. 1).

The nonlinear Eq. (9) cannot be solved in closed form. Furthermore, there were no computer
programs to solve Eq. (9) numerically for bent-over free surfaces at the time the present work was started,
although several now are available. Thus, an approximate solution was obtained. After a considerable
amount of trial-and-error analysis, the following equations were found to represent the free-surface shape
adequately. For the lower part of the surface,

F=F1 =1B { 1-[ -(R/B)2]1/2 } (12)

and, for the upper, or bent-over, part of the surface,

F = F2 = OB + uB [ - (R/B) 4 ] 1/2 (13)

The point at which F1 is joined to F2 is R = B = b/ro, which is the nondimensional radius to the point
where the surface has its vertical tangent (see Fig. 1). For surfaces that are not bent over, F2 is not needed,
and, in this case, B may be larger than Rw. The parameters 3, u, Rw, and B are determined by the boundary
conditions on F and by geometric considerations.

If the surface is not bent over, then Eq. (11) is satisfied if

1=LB 1[-(R/B)2 ] (14)

Requiring that the free surface must intersect the tank wall at R = Rw gives the result that

B {I - [I -(RW/B) 2 ] 1/2 } -H-L (1 -R2 )1 2 (15)

Finally, Eq. (12) must satisfy Eq. (9) at least on the average; that is, F1 must satisfy Eq. (9) when
integrated from R = 0 to R = B. This requires that

1
- = I + 0.168B 2 NBo (16)

Equations (14), (15), and (16) allow /3. B, and Rw to be calculated for a given NBO and volume
of liquid.

3



If the surface is bent over, the same procedure shows that

pR2 = I (LB3) [ (1 .1) (17)

gB + /pB [1 -(Rw/B) 4 ] 1 / 2 = -H + L(1 --R2) 1 / 2 (18)

1
-= 1 + 0.168B2 NBo (19)

Furthermore, the curvature [Eq. (2)] of both F1 and F2 must be the same at R = B in order to give a
continuous pressure. Thus,

1
2 = - 2 (20)

2

These equations specify F1 and F2 for a bent-over free surface.

Comparisons of the free-surface shapes predicted by these equations to the exact shape given in
Ref. 5 for a 5° contact angle, are shown in Figures 2a, 2b, and 2c for a spherical tank and various Bond
numbers. The comparison is very good except for the case of a nearly full tank.
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III. SLOSHING ANALYSIS

A. Basic Equations

The integral or variational form of the sloshing equations of motion can be obtained either from
Hamilton's principle or by a direct integration of the differential equations of motion. In both cases, it is
necessary that the "kinematic" boundary condition for the wave height be satisfied independently; that is,
r7 and ¢ must satisfy the relation that

-as ao df (aO) ao [I + ( to ) ] , Z=f(r)
at az dr ar a I dr 

where i/, the wave height, is measured vertically above the equilibrium free surface and a¢/an is the fluid
velocity normal to the free surface. This equation is nondimensionalized by assuming that ¢ = ¢[r,O,z]
cos ct = (gt)1/ 2 4p[R,,Z] cos s2r and r/ = rf[R,0] sin ct = (r0 /12)e[R,0 ] sin i2r, where n2 = w(r/1g) 1 12 is
the nondimensional natural frequency and r = t(g/ro)l/ 2 is the nondimensional time. In nondimensional
form, the above equation is thus

e = a3/az - (dF/dR)(a3/aR) = (a3/an) [1 + (dF/dR) 2 1 /2 , Z = F(R) (21)

According to Hamilton's principle, the remaining equations of motion can be obtained by requiring
that ¢ and r are such as to minimize the integral

t2

I=f t(T- U) dt
tl

where T is the kinetic energy of the liquid and U is the potential energy, including surface tension effects,
and the integral is taken over one cycle of the motion. Following Satterlee and Reynolds [1], this integral,
in nondimensional variables and after the integration over time is performed, is

I = f-f2 Ij D ( -VJ V@) R dR dO dZ- -- [ (dF/dR)2]3/2 d
2 2 NB NBo [ +(dF/dR)2]3/2 d=

f (N B- _(ae/aR)2 (af0R a 

( { e/R) 2 + +(ae/R 0)2 /e2R dR dO (22)2 NBO [i_ +(dF/dR) 2 ]3 /2 [i + (dF/dR)2 ] 1 /2 R

where the first integral is taken over the entire volume V of the liquid, the second integral over the contact
line R = Rw, and the third integral over the free surface T. The authors of Ref. 1 apparently believed that
Eq. (22) does not lead to the correct differential equations because, after formulating an integral similar to
Eq. (22), they then use a different variational integral in their numerical work. However, Eq. (22) does in
fact yield the correct equations, as will now be shown. By proceeding as shown by Hildebrand [7], the
variation of Eq. (22) is

21r
S1 2 fff(=V 4-6V42)dV-(R WV/NB0)f [ dO

=6 Q jJ(V' sVo) dV- (RwFr/NBo) [1 + (dF/dR)2] 3/2 dO
V 0 IR =Rw

fr (1 r (ae/laR) (dF//R) ( ee R dR (ae (23)
- f C [1 + (dF/dR)2 1 3/2 R2 [1 +(dF/dR)2 ]1 1/2 ) dR d (23)

6



Because 6(V)) = V(6S), the volume integral can be transformed by Green's theorem to give

fffvf. v6'F dV=- fffv2 1sdv± f f 4JiJ(V~' Vb'*) d V = -- JiJ (V2 V) 66 dS + V + )

V V IT w

where the first surface integral is taken over the free surface 7 and the second over the tank walls W . The
surface integrals in Eq. (23) are now integrated once by parts to give the following relations [7]:

2 r1 R=Rwf (aefaR) S (aelaR) - 7r R (ae/aR) be R RW

I +l (dFdR)2 3/2 R dR dO = [1 +(dF/dR) 2 ] 3 2 dO
'T O R=o

-a R--0 ( aR)

fRR { [1 (dF/dR)2] 3 /2 6eR dR dO (24a)
T

and

jjf (c/a°0)b (ae/a ) (a/aO) R dR
f R2 [ + (dF /dR)2 1/2 w R2 [1 + (dFedR)2 1/2

Jff{R2[ (a2e/a 2) R dR dO (24b)

CT

The first integral on the right in Eq. (24b) is equal to zero because be at 0 = 0 is the same as be at 0 = 27r;
that is, be is continuous. Collecting terms,

1 -- Ifff(V2,) Sb dV ++ _2 BO ff_2dV(d Rw )J [(aelaRR - rel 6e

[an BO1 +(dF/dR) 2]3/2
W 0 R =Rw

+JJ NBO kRaR [1 +(dF/dR)2] 3/2 + R2 [ 1 +(dF/dR)
2

] /2 
1

Be

(an()a a(d/a } ]2

22where the fact that the element of area d is [ + dFdR) R dR dO (25)

where the fact that the element of area d9:is [1 ± (dF/dR) 2] 1/2 R dR dO has been used in the last term.

Because &6 and be are completely arbitrary, SI can only be equal to zero (that is, the value of the
integral can be minimized) if each of the integrals in Eq. (25) is separately equal to zero:

V24b = 0 in the liquid volume, V (26)

aOb
- = 0 on the tank walls, Z = W(R) (27)
an

and

ae
-- re = O0 on the contact line,R = R, (28)
aR

7



Equations (26), (27), and (28) are consequences of requiring that the first three integrals on the
right-hand side of Eq. (25) be equal to zero. The last integral in Eq. (25) involves both 6. and be; since the
relation between b* and 6e on the free surface is not known, setting the integrand in this term equal to
zero does not lead to a useful result. But, if in the original variation, the volume integral is transformed in
an alternative way as

J JJ (v*' v64) dV=- JJ (6V 2 ) dV +JJ 6 (an ) [ ( 'dW (29)

V V w4V

then a useful form does result. According to Eq. (26), the variation can be zero only if V2* = 0; thus, we
also have 6V2. = 0. Further, according to Eq. (27), a3/an = 0 onW; therefore, 6(a(lan) = 0 on-W. And
because as/an = e [ + (dF/dR) 2 ] - 1/2 on 'rand R dR d = [ 1 + (dF/dR) 2 1 /2 d%, the surface integral
over F on the right-side of Eq. (29) reduces to ff 6eR dR dO. Using this last relation and then proceeding

with the rest of the manipulations as before, the variation of the integral in this alternative form is

24)] 4)dV+Q 2 JJ[6 (a\N)] do J [l +(dF/dR)2 ] 3/2 .dO

V O 0 R =Rw

NO RaR [1 +(dF/dR)2] 3 /2 R2 [1 +(dF/dR)2]11/2 -+ * 6eRdRd0 (30)

Consequently, the only way that 61 can equal zero is if in addition to requiring that Eqs. (26), (27), and
(28) be satisfied, it is also required that

1 [ a R (aelaR) ± a2 e/aO2 1
NBO RaR [1 +(dF/dR) 2 ]3/2 R2 [1 + (dF/dR) 2 ] 1/2Z=F(R) (31)

Eq. (31) is the last of the required sloshing equations of motion. Thus, any function 4), with e calculated
from 4 by Eq. (21), that minimizes the integral Eq. (22) will also satisfy all of the sloshing equations of
motion.

As mentioned previously, Satterlee and Reynolds [1] and Yeh [4] used a variational integral that was
derived by a direct integration of Eqs. (26), (27), (28), and (31), with Eq. (21) as a required side condition.
This procedure leads to

27r 2

I= 2 (v2 ( NBo) J [ + (dF/dR)2] 3/2 d

0 R =R w

+2 ff[ 0 {[l+(dF/dR) 2]3/ 2 R [+(dF/dR)2 +e RdR d]

_ 2ff (e4) R dR dO (32)

Eq. (32) differs from Eq. (22) in the sign of the first surface integral and in the addition of the term
-2 2 ff(e*)) R dR dO. There is no evident physical significance to Eq. (32), but it does lead directly to the

8



differential equations of motion, which can be proved by repeating the procedure that yielded Eq. (25). In
this case, all of the Eqs. (26), (27), (28), and (31) fall out at once, without further arguments or repeating
the variation in an alternate form. For this reason, Eq. (32) may lead to a more rapid convergence of the
sequence of trial functions for 4) to the true solution; thus, Eq. (32) or a similar formulation will be used in
the present work.

Although Eq. (32) is suitable for use with a free sur-
face that is not double-valued or bent over, the linearization
of the equations with respect to e breaks down at the point
on a bent-over free surface where dF/dR = o (i.e., at the

SLOSH WAVE
point of vertical slope of the surface). At this point, e = ,
according to Eq. (21), unless also a/aR = 0. But a/aR = 
O is not a realistic requirement unless the point where the S 
slope is vertical is also the point where the free surface FREE SURFACE, F(R) /
meets the wall; in this case ao/aR = am/an does equal zero
because the normal velocity at the wall must be zero. In
general, however, e = - and thus the second and higher Z 

powers of e cannot be neglected in the equations. On the
other hand, this prediction of an infinitely large wave height
is simply a consequence of the way in which the wave / // /il D/ J
height is defined. If instead of measuring e vertically above
F, e is measured in the direction normal to F, as shown in
Fig. 3, then Eq. (21) is replaced by 3116

FIGURE 3. NORMAL-TANGENTIAL
e = ad/an at Z = F(R) (33) COORDINATE SYSTEM

For this case, e is always finite. (As will be seen presently, however, this definition of e still leads to
difficulties in the contact angle condition.) To be consistent, Eq. (32) also must be modified to account for
the change in the definition of e:

27r

I= - Q 2 (VJ ·) va4) dV- 22 JJ(e)) dT--(RW IINBo) e2 dO
2122 ff 1 2, f 

V 0 R =Rw

(ae/a
2

±_ - ~G~E
2

± Eldd dJ (34)·IJJ L NB 1 +± (dF/dR) 2 Rao [1 + (dF/dR)
2

] 1/2

where

(d2 F/dR 2 )2 (dF/dR)2
G= + 35)

[1 + (dF/dR) 2]3 R2 [1 + (dF/dR) 2 ] (35)

The double-valuedness in the analytical representations of 4), F, and e along the free surface can be removed
by transforming the coordinate R,O,Z = F(R) which locates a given point on the surface into the coordinate
S,O, where S is the arc-length along the surface from the point R = Z = 0 to the point in question..The
transformation is

dS
-= [I +(dF/dR) 2 ]'/ 2 Z=F(R) (36)
dR

as shown in Fig. 3.

9



The normal derivatives, as/an, on the free surface and the tank walls can be evaluated by the
relations

as Fat (dF \ a /
- I= L4--I )j `1 [ I +(dF/dR)21/2 , Z F(R) (37a)

L(P a--D - -dW [1 +(dW/dR) 2] 1/ 2 , Z W(R) (37b)
an Laz \dR /aR j

where the change in sign is required because the positive normal direction must always point outward.

Finally, for numerical work, it is best to eliminate the volume integral in Eq. (34) by requiring that all
of the assumed functions for eF must satisfy V2 4 = 0 identically. Then, Green's theorem shows that
Eq. (34) reduces to

( f (I ) fEn 2 dO
ff ff 2 2 .' I/·· 2 ' d O

\an/ 2 y d2 \NBO Rw

F (aelaR) 2 ae 1 e2ff {2d- +_ -G2 )|+ d (38)
J J tFN-~o2 1 +(dF/dR) 2] 1/2

An analogous equation can be written when e is measured vertically above F.

B. Contact Line Condition

The contact line condition implied by Eq. (22) or (32) is

ae
- = Fe atR = R
aR

and the one implied by Eq. (34) or (38) is

ae
-F= re atR =Rw
as

For the "no stick" condition (the liquid slides freely along the wall) of interest here, F and r' are functions
only of the tank geometry and the free-surface shape, and the magnitude of r or rF' is picked so that the
contact angle that the wave makes with the wall always is equal to the static contact angle. But, r or r'
cannot be calculated unambiguously because it is impossible to define a wave height e at the wall in an
unambiguous manner. This is demonstrated in Fig. 4, which shows the point of the wave contacting the
wall cannot be correlated in a definitive way with any point or: the static-free surface, either when e is
measured vertically above F or when measured normal to it. As can be seen, various values of r or r' are
possible, depending upon what kind of approximations are used. The approximation used by Concus, et
al. [5] and by Chu [6] for the normal direction definition of e (Fig. 7c) leads to

, I d W/dR cos (d 2 F/dR 2 ) (39)
sin [1 +(dW/dR)2]3/2 [1 +(dF/dR)2]3/2 , R=R (39)

and thus, F' = ° when Ji = 0. This requires that e = 0 at R = Rw for otherwise ae/as = o, which implies
that there is a jump in the wave height at the contact line.
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Now,. 3)/an = 0 all along the walls;
and, for the case 4 = 0, a/3an on the
wall at R = Rw also equals a)/an on the
free surface at R = Rw. Therefore, a/3an
on the free surface at the contact line also
is zero; but, because e = a3/3an on the
contact line (and all over the free sur-
face), it can be concluded that e = 0 on
the contact line, which agrees with the
first conclusion concerning e at R = R.
In fact, e = 0 at R = R, is the "correct"
contact condition when ; = 0 and the
equation ae/as = r'e is essentially redun-
dant. But, the fact that e = 0 at R = Rw
requires analytically that the liquid is not
allowed to move away from the equili-
brium contact line; in other words, the
linearized slosh wave is "stuck" to the
contact line. This is probably not true in
practice but is just a mathematical con-
sequence of both the linearization of the
equations and of the ambiguity in defin-
ing a proper wave height at the wall.

EXTENSION OF FREE SURFACE
WITH CONSTANT

EQUILIBRIUM )
FREE SURFACE

a} d TA-TANK 

a) a I W dR2 /dF1aR I~ ~-d-RL /d~-

*qo0

c) -sin e d / (d'- dR/[ (dF/dR

Ref. 5
In the finite-difference numerical 3117

analyses presented in Refs. 5 and 6, the
contact angle 4, was always equal to a FIGURE 4. VARIOUS CONTACT LINE CONDITIONS
non-zero value (usually 5 degrees). Hence,
in these studies, F' 4 oo and e 4 0 at the contact point. (Further, a1(/an onT at the contact point is not
equal to a)/3an on W at the contact point, and thus e does not have to be zero at R = Rw.) It might be
possible, therefore, to approach the case 4 - 0 numerically in order to determine if the numerical solutions
converge to a definite value as 4 - 0. In this regard, however, Chu [6] noticed a sensitivity in his results to
changes in the value of 4 or r' for small values of 4A. In the absence of evidence to the contrary, it seems
likely that the definition of F' in Eq. (39) is not sufficient to eliminate the mathematical difficulties when
4 = 0, and, for this reason, it might not be accurate to extrapolate the results presented in Refs. 5 and 6 to
the case 4, = 0 unless the extrapolations are verified by accurate experiments.

Measuring e vertically above F also leads, in general, to the result that e = 0 at the contact line when
¢ = 0. The only exception to the condition that e = 0 at R =R, is the case for which the free surface at the
contact line has a vertical tangent, as in a cylindrical tank; for this case, the vertical wave height can be
defined unambiguously at the contact line. (Mathematically, dF/dR = - at R = R, and so e = (a4,/an)[1 +
(dF/dR) 2 ] 1/2 = 0 X o, which is undefined. Thus, e is not necessarily zero at R = Rw, and, in fact, the

correct contact line condition is aelaR = 0 at R = Rw.)
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IV. SOLUTION OF EQUATIONS

A. Rayleigh-Ritz Technique

The form of Rayleigh-Ritz technique used here to solve the variational integral involves assuming a set
of functions Fn(R,O,Z), n = 1,2,3 ... , N, each of which satisfies V2 q4n = 0. Then, the velocity potential is
written as the sum

N

D(R,O,Z) = X ann(RgoZ)
n= l

where the constants an are to be determined. The wave height e, calculated by Eq. (21) or Eq. (27)., is

N

E(R,O) = anEn(Ro )

n= 1

These expressions are substituted into the variational integral, Eq. (38), and the various definite integrals
are computed numerically. The result is

N N

1= E anam(Bnm
-

22 Anm)
n= m = I=l

where the constants Bnm and Anm are the values of the definite integrals of )n, cnm, en, and em and their
derivatives in Eq. (38). The value of I is minimized by picking the values of an such that

N

-=7, X [Bnm +Bmn -02(Anm +Amn)] am =0 , n = 1,2,3, . .. ,N
aan

m=l

in matrix form, this equation is

[B +BT] [a] - 22 [A +AT] [a] = 0 (40)

The two solutions of Eq. (40) are I [a] = 0, which means the liquid has no motion at all, a solution
which is not of interest here, and

I[B +BT] - 22 [A +AT] =0 (41)

Eq. (41) represents a standard eigenvalue problem, and the values of Q2 = 4Qn which allow the determinant
in Eq. (41) to be equal to zero are the natural frequencies 2n, or slosh frequencies, of the problem. Once
the fn2 are known (there are N of them), the constants an, which are the eigenvectors, can be computed
with the aid of Eq. (40).

In the limit as N - -, F4 and e, when determined in the above way, satisfy the boundary conditions,
Eqs. (27), (28), and (30); also F satisfies the incompressibility condition V2 qb = 0 [Eq. (26)] . Thus, (Q is
the true velocity potential of the low-gravity sloshing problem, and the slosh mode shapes, forces, moments,
etc. can be calculated.

12



B. Trial Functions and Results

To make the Rayleigh-Ritz technique feasible, it is usually necessary to pick trial functions (1)n that
"suit" the problem. Two different sets of functions were evaluated during the present work. The first was
the set of polynomials used by Rattaya 13] :

,n(R,O,Z) = cos 0 Z a (n)RkZn-k
k

(41)

k = 1,3, ...

where, in order to satisfy V2 (n, = 0, it is necessary that

a =(n - k +2)(n - k + 1)la(n) k= 3,5,. . n
k2 -- I I 

and

a" ) = 1 for all n

Rattaya reported excellent results using Eq. (41), with N < 12, in his analysis of sloshing in ellipsoidal
tanks, which neglected low-gravity effects. However, these functions gave very poor results during the
present study and were abandoned rather early.*

The second set of functions used in the present study were those that describe sloshing in a cylin-
drical tank:

cosh [7y(Z ± H + L)]
n(R,O,Z) = cos 0 J, (XnR) cosh [Xi(Z +H + L)]

cosh [Xn(Fmax +H+L)] J
(42)

where Fmax =F(Rw).

The constant Xm in each nom was picked so that 4m satisfied
in some sense the boundary condition a+4/na = 0 on the tank walls;
this should improve the rate of convergence of .amO4m to the true
4). One method that was tried was to use the value of Xm that made
3a,,,laR = 0 at R = 1. Thus, with this method, the normal velocity
was zero over all the cylindrical surface, R = 1, L --H> Z> -L -
H, 0 6 0 < 27r, and 0 6 R 1, Z = -L -H, 0 0 < 27r, which
bounds the actual tank; this is the technique suggested by Moiseev
and Petrov [8]. (Note, however, that the assumed contact line con-
dition e = 0, which should be satisfied by the sum 7O°mem, is not
satisfied by each em individually when computed in this way; the
reason for this is that the condition used to calculate Xn, does not
insure that 3alm/an = 0 at the contact point.) Table I gives repre-
sentative values of Q2, for a spherical tank that were calculated using
these X,, for the case NBO = 100 and a free surface that is not bent
over. As can be seen, the comparison with the present results and
those given by Rattaya [3] (for NBO = °) are fairly close; with
further refinement in the numerical work, it is believed that the
comparison would be even closer.

TABLE 1. VARIATION OF n1 AS A
FUNCTION OF TANK FILLING
AND NUMBER OF TERMS IN

APPROXIMATING SERIES
FOR (D. NBO = 100

*1Because Rattaya neglected surface tension and curvature effects, he was able to include the boundary condition Eq. (21)
in his variational integral. Thus, for any finite value of NBO, his integral and the present one cannot be made to be identical.
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Liquid N n2 I21 , Ref. 3Volume

47.2% 1274 1.230
12 1.276

35% 5 1.239 1.185
12 1.239
5 1.231

30% 1 1.231 1.16012 1.231
5 1.226

25% 12 1226 1.14012 1.226
5 1.225

20% 12 1.225 1.12512 1.225
5 1.230

15% 12 1.230 1.10012 1.230



The second method was to use the value of Xm in Eq. (42) that made aI Im/an = O at the contact line;
this automatically forced each em to be equal to zero at the contact line, which thus identically satisfied
one more of the boundary conditions. The results using this method were quite similar to the results
presented in Table I.

For bent-over free surfaces, neither method of picking X,, seemed to give satisfactory results. As an
example, the case NBO = 100 for a 70% full spherical tank resulted in QS2 = 1.797 for l = 0° whereas,
according to Refs. 5 or 6, the correct result is about E2l = 1.34 when rq = 5° . After many more test cases
and manipulations of the trial functions 'cm, with no further improvement in the prediction of Q2,, it was
concluded that either (1) a suitable set of functions 'm had not been discovered* or else (2) the boundary
condition that em = 0 at R = R w forced the frequency to be too large because of the added "stiffness"
given to the free surface as a result of the "stuck" contact line. A third alternative is that the present result
for 0 = 0° is correct, or could be made so with further refinement of the technique, so that therefore the
difference between the present 21 and the result given in Ref. 5 is due to i being 50 in Ref. 5. This
alternative would be a likely explanation if the numerical technique used in Refs. 5 or 6 does not converge
to a definite result as iq - 0° . However, it was not feasible to evaluate the numerical convergence of these
methods during this project.

*Another obvious set is Legendre polynomials.
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V. CONCLUSIONS

It has been shown that Hamilton's principle leads to a variational form of the sloshing equation which
is equivalent to the usual differential equations. A second form of the variational integral, which may be
more convenient to use in numerical work, was derived by direct integration of the differential equations
and boundary conditions and was used in the subsequent work.

The "contact line condition" implicit in the variational form of the sloshing equations (or assumed in
the differential equation form) was shown to be ambiguous for the case of a zero-degree contact angle. The
ambiguity is a result of both the linearization of the equations with respect to the wave height and the
impossibility of mathematically defining the slosh height at the walls of an ellipsoidal tank. Although the
ambiguity does not appear to be serious for non-zero contact angles, it is believed to be a critical limitation
in the analysis of bent-over free surfaces with a zero-degree contact angle.

Numerical results of sloshing in ellipsoidal tanks for free surfaces that are not bent over (tanks less
than half-full) compare well with previous work. For bent-over surfaces, however, the computed natural
frequencies were considerably larger than those computed previously for a contact angle of 5 degrees. The
discrepancy is probably the result of the contact line condition difficulty mentioned above which, for a
zero-degree contact angle, implies analytically that the slosh wave is "stuck" to the contact line. A satis-
factory resolution of the contact line difficulty was not obtained.
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APPENDIX

Summary of

"Low Gravity Sloshing in Rectangular Tanks"

by

Franklin T. Dodge
Luis R. Garza
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Contract NAS8-24022

January 1970
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Liquid sloshing in rectangular tanks was studied theoretically and experimentally under low Bond
number conditions. The static-free surface shape was computed accurately by an approximate technique,
and the results were used in the equations of motion for the fluid to determine the sloshing parameters. The
sloshing equations were solved by Galerkin's method. The natural frequency parameter was found to
increase, and the equivalent slosh mass to decrease, under low Bond number conditions. Nonlinearities in
the experimental results prevented a close comparison of theory and test, but the trends of both were
similar. Exploratory tests with square tanks showed that nonlinear effects prevailed here also, even for large
Bond numbers.

Figures A-i, A-2, and A-3 show the comparison
width-to-thickness ratio of 10.
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